
Half Life Variable Quantum Time Round Robin
(HLVQTRR)

Simon Ashiru , Salleh Abdullahi , Sahalu Junaidu

Department of Mathematics, ABU Zaria,

Nigeria

Abstract— Round Robin (RR), one of the oldest CPU
scheduling algorithms has found its importance in time
sharing systems. In an ideal RR an equal quantum time is
allocated to each process residing in the ready queue. A
process which is assigned a CPU may run to completion if and
only if its quantum time is greater than its CPU burst.
Otherwise, after the process exhausted its quantum time the
process must be preempted to take turn in the next round.
Some major challenges in classical RR are: poor response
time, unnecessary context switching and poor
multiprogramming. Using Half Life Variable Quantum Time
Round Robin (HLVQTRR), variable quantum time is used to
eliminate those challenges. All dataset used for the evaluation
are generated using normal distribution function.

Keywords— Round Robin (RR), turnaround time, waiting
time, context switching (CS), quantum time (QT).

I. INTRODUCTION

One of the most important functions of an operating
system is resource allocation. Since the number of
processes ready and requesting to use the CPU is enormous,
the operating system must provide a mechanism to carefully
distribute resources to processes that are in need. Since the
CPU can only attend to a process at a giving time, resources
must be shared in some fashion to processes which are
ready and requesting to use the CPU. This will provide
optimal performance of the system. The technique of
sharing this resource is called scheduling and it is
performed by a module in the operating system called the
scheduler.
 There are basically three types of processor scheduler:
the job scheduler (Long term scheduler), CPU scheduler
(Short term scheduler) and the Medium time scheduler.
The long term scheduler selects jobs from the job pools into
memory for execution. It determines which programs are
admitted to the systems for processing, thus, it controls the
degree of multiprogramming [6]. But the short term
scheduler selects processes from the memory and assigns
them CPU for execution. Scheduling here is based on the
requirement of the resources. It is essentially concern with
memory management and often designed as a memory
management subsystem of an operating system [5]. Some
operating systems such as time sharing systems, may
introduce an additional scheduling known as Medium time
scheduler. The sole idea of medium term scheduling is that
sometimes it can be advantageous to remove processes
from memory (and from active contention for the CPU) and

thus reduce the degree of multiprogramming. Later, the
process can be reintroduced into memory, and its execution
can be continued where it is left off [10]. It temporarily
removes a process from the main memory which is of low
priority or has been inactive for a long time. This scheme is
called swapping. The process is swapped out, and is later
swapped in, by the medium-term scheduler [10].
 Fig. 1 below shows the abstraction on how jobs are
admitted into memory by the job scheduler or long term
scheduler. Then, the processor scheduler selects one among
many processes and execute.

A. Preliminaries

A process is defined as an active program. A program
loaded into main memory for execution is considered to be
a process. Programs are passive entity, such as a file
containing a list of instructions stored on disk [10]. A
program becomes a process when an executable file is
loaded into memory for execution [10]. A process is said to
be active because besides the code section, it also include
the current activities, as represented by the value of the
program counter and the contents of the processor’s
registers [5]. A giving process may be in the following
states:

 New: a process is just newly created.
 Running: the process is currently using the CPU.
 Waiting: the process is waiting for some event to

occur such as I/O event and so on.
 Ready: the process is ready to be assign a

processor.
 Terminated: the process has finished execution.

Fig 1: Abstraction of scheduling structure

P1

P2

P3

--
--
--

Pn

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7210

Fig. 2 shows that a new created process is admitted into
the ready queue. Once admitted, its state changes from
‘new’ to ‘ready’ state. As soon as a ready process is
dispatched to use the CPU, its state will become ‘running’.
Three things can happened to a running process: it may be
interrupted as a result of the timer interrupt and its state
become ‘ready’; or a running process can upon completion
exit the system and its state becomes ‘terminated’; or a
running process may request for an i/o event which will be
forced to release the CPU and it state becomes ‘waiting’,
and then back to ‘ready’ upon completion of i/o event.

II. SCHEDULING CRITERIA

Some of the various parameters use to measure or
evaluate the performance of CPU scheduling algorithms are
listed below.
 CPU utilization: The CPU must not be idle, it should be

as much as possible 100% busy.
 Throughput: The amount of tasks/jobs to be completed

within a given time is known as throughput. Throughput
should be maximized.

 Turnaround Time: it is the time taken to complete a given
job. In order word, it is the time a job is waiting in the
ready queue plus its CPU burst. Turnaround time is to be
minimized.

 Waiting Time: This is the time a job waited in the ready
queue. It should be minimized.

 Response Time: In an interactive system, turnaround time
may not be the best criterion. Often, a process may
produce some output fairly early and continue computing
new results while previous results are being output to the
user. Response time is the time from the submission of a
request to when the first response is produced. This also
should be minimized.

 Number of context switching: This is the act of switching
a process in and out of the CPU as a result of interrupt. It
should be minimized.

III. MOTIVATION

Quantum Time (QT) is the major challenge of RR CPU
algorithm because if one is not careful enough the
algorithm may change and its purpose is defeated.

Choosing a larger QT will practically degrade the system to
First Come First Serve (FCFS) scheduling, a smaller one
will create an overhead of context switching. Majority of
the research work on dynamic RR jerks up QT above the
average so as to achieve reduction in the average waiting
time, average turnaround time and number of context
switching. This is good but it is bound to face even greater
challenges such as: poor multiprogramming, poor response
time and unnecessary context switching. Some of the
proposed algorithms went further and attached priority to
shorter jobs. These two key issues make most of the
proposed algorithms tending toward FCFS and Shortest Job
First (SJF), and at the same time causing unnecessary
context switching and poor response time. In the proposed
algorithm, variable QT such that each is far less than the
average of processes in the ready queue shall be computed.
This shall greatly improve on the response time,
multiprogramming, and eliminate unnecessary context
switching.

IV. RELATED WORKS

Each of the proposed dynamic RR CPU scheduling
algorithms provides some level of solutions base on their
arguments. Among which are: Even Odd Round Robin
(EORR). EORR took note of positions of processes in ready
queue. The average of processes in odd positions is
compared with the average of processes in the even
positions and the greater is considered to be the quantum
time [6]. Average Mid Max Round Robin (AMMRR).
AMMRR calculates its quantum time as the mean between
the average of processes in the ready queue and maximum
CPU burst time [8]. In Ascending Quantum Minimum
Maximum Round Robin (AQMMRR), quantum time is
gotten by multiplying the summation between the minimum
and the maximum CPU burst by 80 percent [2]. As for
Multi Dynamic Quantum Time Round Robin (MDQTRR),
there are two quantum time in each round. The first process
up to the middle process uses the median quartile formula
to calculate quantum time while preceding processes uses
third quartile formula for it quantum time [4]. In Variable
Quantum Time (VQT), averaging technique is employed to
ensure that each process in the ready queue has a different
quantum time [13]. Dynamic Quantum Time using the
Mean Average compute time quantum in each round and
use it to perform scheduling to processes in ready queue [1].

V. PROPOSED APPROACH

Half Life Variable Quantum Time RR (HLVQTRR):
Sometimes, some processes may go for more than two
round and as such increases the number of context
switching, average waiting time and average turnaround
time. But HLVQTRR ensures that half of every processes’
bursts be executed in the first round, and in the second
round the remaining half should run to completion. This
will greatly improve multiprogramming irrespective of the
variation in the processes’ length in the ready queue. In SJF,
the major problem is starvation. This is solved because only
half of a process’s job is executed what is left is preempted
and the next process is attended to and so on. The major

Fig. 2: Process state diagram

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7211

emphasis of this scheduling is: high multiprogramming,
high response time, simplicity, elimination of unnecessary
context switching and fairness which are the main criteria
of RR CPU scheduling algorithm. At least, whatever the
case may be, response time for each process will be high.
This attribute is of high interest to real time systems.
Another advantage of HLVQRR is that it maximizes the

cost of calculating quantum time in the second round. This
means that in the second round which is also the final round,
all the processes in the first round reappear. Other
algorithms may go for second and third round with just two
or three processes out of many. This may cause a serious
disadvantage. Fig. 3 and Fig. 4 below are the flow chart
and algorithm for the proposed approach

.

Fig 4: HLVQTRR algorithm

1. //N= Number of processes

//Pi= ith Process

//PiQT= Quantum time for ith process

//i= Loop variable

//QT = quantum time

//BT= Burst time of the processes

2. While(RQ !=NULL)

// RQ= Ready Queue

//Calculation of Quantum time (QT)
for i=1 to N Loop
{
PiQT= Pi/2 // take the floor value
}

3. // Assign QT to (1 to n) processes.
for i=1 to N loop
{
Pi=QT
Calculate the remaining Burst time of ith process.
}
End of for

4. If (new process arrived)
Then go to step1
else if (new process is not arrived and BT!=0)
then go to step 3
else
goto step 5
end of if
end of while

5. Calculate AWT, ATAT and CS
//AWT=Average waiting time
//AWT=Average turnaround time
//CS= Number of context switch

6. End

Fig. 3 : HLVQTRR flow chart

START

 RQ != NULL ?

Y

N

Is BT !=0?

Pi= PiTQ

N

Y

Is i<=N?

PiTQ=Pi/2

Calculate the remaining burst for the process

Is new process
arrived?

Calculate AWT, ATAT, CS

STOP

N

Y

Y

N

i++

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7212

VI. ILLUSTRATION/ANALYSIS

Case 1:
Using mean =80 and deviation=20, the following

processes (Pi) and their associated CPU burst are generated.
{P1=88, P2=89, P3=85, P4=93, P5=90, P6=84, P7=90}

A. Classical Round Robin

In a classical RR, the quantum time is the average of
processes CPU burst in the ready queue.
Quantum time (QT) = (88+89+85+93+90+84+90)/7 =619/7
= 88. (Always use the ceiling.)
After applying Round Robin, the left over time will be:
Remaining processes CPU burst: P2=1, P4=5, P5=2, P7=2.
These lefts over will be use in round two (2) with same QT.

1) Observation: In classical RR,
Multiprogramming: Only four (4) processes display
multiprogramming because they reappeared in the next
round. They are: P2, P4, P5 and P7, while the rest ran to
completion.
Response time: For P2, after the first round it began to
respond at time 609, P4 at time 610, P5 at time 615 and P7
at time 617. This is not good at all.
Context switching: Context switching is 11. The overhead
cost incurred performing context switching in the second
round was unnecessary. P2 was preempted just for 1 time
unit, P4 was preempted just for 5 time unit, P5 was
preempted just for 2 time unit and P7 was preempted just
for 2 time unit. All of these were unnecessary. If it can
execute up to 88 time unit, it should not have been
preempted just for 1 remaining time unit. Same goes to the
rest. It also implies that the multiprogramming it displayed
was also unnecessary.

Fig 5: Gantt chart of classical RR and HLVQTRR

B. Half Life Variable Quantum Time Round Robin
(HLVQTRR)

Method: (take the ceiling to be QT)
P1: QT= 88/2 = 44, P2: QT= 89/2≈ 45, P3: QT= 85/2 ≈ 43,
P4: QT = 93/2≈ 47, P5: QT= 90/2 = 45, P6: QT= 84/2 =
42, P7: QT = 90/2 = 45. After applying round robin, the
left over time will be:
Remaining processes CPU burst: P1=44, P2=44, P3=42,
P4=46, P5=45, P6=42, P7=45. In this second round, each
process will run to completion. That is QT will be equal to
each processes’ remaining CPU burst.

1) Observation: In HLVQTRR,

Multiprogramming: All the processes will always display
multiprogramming. Multiprogramming is guaranteed.

Response time: P2 began responding at 355, P4 at 441, P5
at 487 and P7 at 574 time unit. Compare to the classical RR,
the difference in the response time for P2 between classical
RR and HLVQT RR is 609-355=254 time unit. Their
differences are highly significant in favour of HLVQTRR.
This goes same with the rest processes.

Context switching: Context switching is 14. Although it is
much, it has achieved high response time. Each of the
switching is done intelligently because processes must have
executed half way before switching.

Fig. 5 below shows the Gantt charts between Classical RR
and HLVQTRR.

Case 2:

Classical RR Gantt chart:

 P1 P2 P3 P4 P5 P6 P7 P2 P4 P5 P7

0 88 176 261 349 437 521 609 610 615 617 619

Round 1 Round2

HLVQTRR Gantt chart

Round1 Round2

 0 44 89 132 179 224 266 311 355 399 441 487 532 574 619

 P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7213

Using mean =80 and deviation=60, the following processes
and their associated CPU burst are generated. P1=110,
P2=89, P3=113, P4=137, P5=86, P6=131, P7=95}
Multiprogramming: In Classical RR, P1, P3, P4 and P6
displayed multiprogramming. While In HLVQTRR, all the
processes displayed multiprogramming.
Response time: In classical RR, P1 start responding at 706,
P3 at 707, P4 at 711, P6 at 739. While in HLVQTRR,
response times are at: P1 at 383, P3 at 482, P4 at 538 and
P6 at 649
Context switching: In classical RR, their lefts over time
were so small. Switching for next round was unnecessary.
While in
HLVQTRR, Context switching is 14. Each of the switching
was done intelligently.

 Case 3:
Using mean =80 and deviation=70, the following processes
and their associated CPU burst are generated. {P1=82,
P2=128, P3=113 P4=129, P5=115, P6=115, P7=81}
Multiprogramming: In Classical RR, P2, P3, P4, P5 and
P6 displayed multiprogramming. While In HLVQTRR, all
the processes displayed multiprogramming.

Response time: In classical RR, P2 starts responding at 708,
P3 at 727, P4 at 731, P5 at 751 and P6 at 757. While in
HLVQTRR, response times are at: P2 at 425, P3 at 489, P4
at 545, P5 at 609 and P6 at 649
Context switching: In classical RR, their lefts over time
were so small. Switching for next round was unnecessary.
While in HLVQTRR, Context switching is 14. Each of the
switching was done intelligently.

VII. SIMULATION
 All processes are considered to be in the ready
queue and their arrival time set to be zero. Also, processes
are considered to be of same priority. The simulator uses
normal distribution function which requires three input
parameters to generate processes and their associated CPU
burst. The input parameters are: mean (µ), standard

deviation , and number of process. When the program

is executing, it will request the user to supplier number of
process, the mean and the standard deviation. The
simulator computes the average waiting time, average
turnaround time, and number of context switching for each
algorithm (Classical RR and HLVQTRR). The results of
the experiments are given in the table and figure below. Fig
6 below shows the interface of the simulator

.

 Fig 6: Interface of the simulator

Table 1 below shows the simulation result in a tabular form.
P is number of process, d is the deviation value used in
each run, CS is the context switching, MP stands for
multiprogramming rate. The average response time used is
the average of the time of response of all the processes in
the first round. Multiprogramming tracks those processes
that went beyond

the first round. From the table, the rate at which HLVQTRR
is winning in multiprogramming and response time is more
than it is losing in average waiting time and average
turnaround time when compared with the classical RR. The
idea is to have an algorithm which has a better response
time and multiprogramming such that it does not suffer
much in average waiting time and average turnaround time.

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7214

 Table 1: Simulation results

The graphs below further demonstrate how efficient
HLVQTRR as far as response time and multiprogramming
is concern.

Fig 7: Graph of average waiting time

 Fig 8: Graph of average turnaround time

 Fig 9: Graph of average response time

Fig 10: Graph of multiprogramming rate

From fig. 7 and 8 above, Classical RR is slightly better than
HLVQTRR. But looking at fig. 9 and 10, it can be observed
that HLVQTRR provides a better response time and
multiprogramming than its classical RR counterpart. The
results obtained in fig. 9 and 10 are so significant unlike the
difference obtained in fig. 7 and 8 which is less significant.

Simulation result between Classical RR and HLVQTRR

P

d

Mean

Classical RR HLVQTRR
AWT ATAT Average

response
time

MP AWT ATAT Average
Response time

MP

10 45 56 565.4000 648.8000 358.8000 6 564.60000 648.00000 189.3000 10
20 78 98 1724.700 1863.700 1203.300 10 1961.5500 2100.5500 640.3500 20
30 321 213 6690.070 7034.470 4390.970 14 7458.5300 7802.9300 2464.930 30
40 342 453 16518.50 17149.72 11570.18 17 18401.600 19032.800 6092.520 40
50 443 564 29119.96 29941.60 18968.70 25 30284.160 31105.800 10154.42 50
60 543 653 39993.70 40949.23 26142.55 30 42292.900 43248.430 14104.08 60
70 564 674 48017.04 48974.86 30894.93 35 49755.390 50713.200 16710.27 70
80 634 754 59437.34 60493.22 38822.68 38 62810.260 63866.150 21103.35 80
90 746 876 82855.50 84121.70 51997.59 50 84399.130 85665.330 28054.71 90
100 768 987 92664.20 94018.38 61660.62 49 100305.79 101659.97 33276.13 100

1724.7 1961.55

6690.07 7458.53

16518.5 18401.6

29119.96 30284.16

39993.7 42292.9

48017.04 49755.39

59437.34 62810.26

82855.5 84399.13

92664.2 100305.79

0

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80 90 100

a
v
e
ra
g
e
 w
a
it
in
g
 t
im

e

number of processes

AWT: Classical RR vs HLVQTRR

Classical RR

HLVQTRR

1863.7 2100.55

7034.47 7802.93

17149.72 19032.8

29941.6 31105.8

40949.23 43248.43

48974.86 50713.2

60493.22 63866.15

84121.7 85665.33

94018.38 101659.97

0

20000

40000

60000

80000

100000

120000

10 20 30 40 50 60 70 80 90 100a
v
e
r
a
g
e
 t
u
r
n
a
r
o
u
n
d

t
im

e

number of process

ATAT: Classical Vs HLVQTRR

Classical RR

HLVQTRR

97 2464.93

18 6092.52

7 10154.42

55 14104.08

93 16710.27

68 21103.35

59 28054.71

62 33276.13
0

10000

20000

30000

40000

50000

60000

70000

10 20 30 40 50 60 70 80 90 100

A
v
e
ra
g
e
 r
e
s
p
o
n
s
e
 t
im

e

number of process

Graph of average response time

Classical RR

HLVQTRR

30

40

50

60

70

80

90

100
0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100

M
u
lt
ip
ro
g
ra
m
m
in
g
 r
a
te

number of process

Multiprogramming graph

Classical RR

HLVQTRR

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7215

VIII. WHY HLVQTRR IS BETTER THAN CLASSICAL RR
In fact, after studying high performance computing, it is
clear that HLVQTRR will be a good algorithm to perform
scheduling seeing that processes are roughly equally
partition. Whatever the case may be, it will demonstrate
multiprogramming by ensuring only half of each process is
executed in the first round the remaining will be executed in
the second round. The slight achievement made by classical
RR in average waiting time and average turnaround time
against HLVQTRR cannot be compared with the high
achievement made by HLVQTRR in response time and
multiprogramming. The overall result is in favour of
HLVQTRR.
 One of the challenging issues regarding classical RR is
how it handles multiprogramming in a situation whereby
processes with the same priority arrive at different time. For
example, if the first process begins using CPU before any
other process arrives, irrespective of the process size, the
process that has the CPU must run to completion without
being preempted. This is because in an ideal classical RR
the quantum time will be equal to the CPU burst of the
process that arrived first and begins to use the CPU. At this
time, the running process cannot be preempted unless
another process with higher priority arrives. For example,
assuming P1 having CPU burst of 80ms arrives at time t=0,
and begin to use the CPU. After 3ms, another process say
P2 arrives with CPU burst of 5ms, having same priority
with P1. In classical RR, P1 QT will be the same as its burst
time, that is QT=80ms. Though it is RR algorithm, in this
kind of scenario, the first process which is P1 must run to
completion irrespective of its size. P2 will have to wait for
as long as it takes. This is a complete drawback in
multiprogramming and response time. P2 will begin
responding at 80ms-3ms=78ms, a time that will take P1 to
complete its execution. This problem is solved in
HLVQTRR. The solution is this: if the second process (P2)
arrives in the first round of the first process (P1), then P1
will be preempted as soon as it finished its first round. But
if P2 arrives in the second round of P1, then the P2 must be
patient to wait because the first process (P1) has gone
beyond half of its job. Using the same example above, P1
will only run for 40ms, that is, half of its job will be
executed in the first round. But, since P2 arrived when P1
must have executed its job for 3ms, P2 will actually begin
responding at 40ms-3ms=37ms as compared to 78ms in
classical RR. The difference in their response time is 78ms
- 37ms=41ms in favour of HLVQTRR.
 Another problem with classical RR is that all the
processes less than or equal to their average value will
definitely run to completion without being preempted. This
does not display multiprogramming and response time is
very poor. In order to demonstrate high level of
multiprogramming and response time, HLVQTRR is
introduced. In HLVQTRR, half of each process must return
for second round. For example, looking at their Gantt charts
(fig. 5) for the classical RR, after first round, P2 began
responding at 609, P4 at 610, P5 at 615 and P7 at 617. But
when compared with that of HLVQTRR Gantt chart P2
began responding at 355, P3 at 399, P4 at 441, P5 at 487,
P6 at 532 and P7 at 614. It is very clear that the difference

in their corresponding response time is very high in favour
of HLVQTRR.
 The other problem is tie up to the attempt made on the
various proposed dynamic RRs. It is clear that each of the
approach tries to jerk up the quantum time just above the
average. Because the classical RR uses the average as its
quantum time, all the dynamic RR jerks up the quantum
time slightly above the average. This is an attempt to
capture more processes in the first round that were not
captured in the first round when using classical RR. Their
concept is the same: for one dynamic RR to perform better
than the other, its quantum time must just be slightly greater.
If the quantum time is continuously been jerked up a time
will reach when the algorithm will become FCFS. But
HLVQTRR provides quantum time for each process that is
far lower than the average, and despite that, it demonstrates
high rate of multiprogramming involving all the processes
and has a fair result in its AWT and ATAT.

IX. CONCLUSION
 It is clear that HLVQTRR is better than the classical RR.
It has displayed high rate of multiprogramming and
response time. There is no unnecessary context switching
like that of classical RR. Although, emphasis was not on
average waiting time and average turnaround time, yet it
produced a fair result. Given any ideal dataset, HLVQTRR
will always perform better in terms of: multiprogramming,
response time and appropriate context switching.

REFERENCES
[1] Abbas N, Ali K and Seifedine K., 2011. “A New Round Robin

Based Scheduling Algorithm for operating systems: Dynamic
Quantum using the mean average”. IJCSI International Journal of
Computer Science Issues, Vol. 8, Issue 3, No.1. pp. 224-229.

[2] Ali D.J. 2012. “Improving efficiency of Round Robin scheduling
using Ascending Quantum and Minimum-Maximum burst time”, J.
of university of anbar for pure science. Vol.6:NO.2. pp.23-27.

 [3] Bashir A., Doja1 M.N., Biswas R., and Alam .M. 2011. “Fuzzy
Priority CPU Scheduling Algorithm”. IJCSI International Journal
of Computer Science Issues, Vol. 8. pp. 386-390

[4] Behera H.S., Rakesh M., Sabyasachi S. and Sourav B.K. 2011.
“Comparative performance analysis of Multi-dynamic Quantum
time Round Robin (MDQTRR) Algorithm with Arrival Time”.
Indian Journal of Computer Science and Engineering (IJCSE), Vol.
2. pp. 262-271.

[5] Bovet D. P, Cesati M. 2006. 3rd edition, “Understanding the Linux
Kerne”l, O’Reilly Media, Inc., USA. pp. 1- 923.

[6] Pallab B., Proba B. and Shweta D.S. 2012a. “Comparative
Performance Analysis of Even Odd Round Robin Scheduling
Algorithm (EORR) using Dynamic Quantum time with Round
Robin Scheduling Algorithm using static Quantum time”.
International Journal of Advanced Research in Computer Science
and Software Engineering. Volume 2. pp. 62-70.

[7] Pallab B. Proba B. and Shweta D.S. 2012b. “Comparative
Performance Analysis of Average Max Round Robin Scheduling
Algorithm (AMRR) using Dynamic Quantum time with Round
Robin Scheduling Algorithm using static Quantum time”,
International Journal of Innovative Technology and Exploring
Engineering (IJITEE). Volume-1. pp. 56-62.

[8] Pallab B., Proba B. and Shweta D.S. 2012c. “Performance Evaluation
of a New Proposed Average Mid Max Round Robin (AMMRR)
Scheduling Algorithm with Round Robin Scheduling Algorithm”.
International Journal of Advanced Research in Computer Science
and Software Engineering, Volume 2. pp.143-151.

[9] Puneet V.K., Nadeem A. and Faridul S.H. 2012. “Efficient CPU
Scheduling Algorithm Using Fuzzy Logic”. International Conference
on Computer Technology and Science, IPCSIT vol. 47. pp. 13-18.

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7216

[10] Silberschatz A, Galvin P.B. and Gagne .G, 2005, “Operating Systems
Concepts”, (7th ed), John Wiley and Sons, USA. pp. 1-885.

[11] Sunita B., Bhavik K. and Chittaranjan H. 2011. “Dynamic Task-
Scheduling in Grid Computing using Prioritized Round Robin
Algorithm”. IJCSI International Journal of Computer Science Issues,
Vol. 8. pp. 472-477.

[12] Tanenbaun A.S. 2008. “Modern Operating Systems”. (3rd ed),
Prentice Hall, pp. 1104.

[13] Yashasvini S. 2013. “Determining the Variable Quantum Time (VQT)
In Round Robin and importance over Average Quantum Time
Method”, International Journal of Science, Engineering and
Technology Research (IJSETR) Volume 2. pp. 613-617.

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7217

