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Abstract— Round Robin (RR), one of the oldest CPU 
scheduling algorithms has found its importance in time 
sharing systems. In an ideal RR an equal quantum time is 
allocated to each process residing in the ready queue. A 
process which is assigned a CPU may run to completion if and 
only if its quantum time is greater than its CPU burst. 
Otherwise, after the process exhausted its quantum time the 
process must be preempted to take turn in the next round. 
Some major challenges in classical RR are: poor response 
time, unnecessary context switching and poor 
multiprogramming. Using Half Life Variable Quantum Time 
Round Robin (HLVQTRR), variable quantum time is used to 
eliminate those challenges. All dataset used for the evaluation 
are generated using normal distribution function. 
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I. INTRODUCTION 

One of the most important functions of an operating 
system is resource allocation. Since the number of 
processes ready and requesting to use the CPU is enormous, 
the operating system must provide a mechanism to carefully 
distribute resources to processes that are in need. Since the 
CPU can only attend to a process at a giving time, resources 
must be shared in some fashion to processes which are 
ready and requesting to use the CPU. This will provide 
optimal performance of the system. The technique of 
sharing this resource is called scheduling and it is 
performed by a module in the operating system called the 
scheduler. 
 There are basically three types of processor scheduler: 
the job scheduler (Long term scheduler), CPU scheduler 
(Short term scheduler) and the Medium time scheduler. 
The long term scheduler selects jobs from the job pools into 
memory for execution. It determines which programs are 
admitted to the systems for processing, thus, it controls the 
degree of multiprogramming [6]. But the short term 
scheduler selects processes from the memory and assigns 
them CPU for execution. Scheduling here is based on the 
requirement of the resources. It is essentially concern with 
memory management and often designed as a memory 
management subsystem of an operating system [5]. Some 
operating systems such as time sharing systems, may 
introduce an additional scheduling known as Medium time 
scheduler. The sole idea of medium term scheduling is that 
sometimes it can be advantageous to remove processes 
from memory (and from active contention for the CPU) and 

thus reduce the degree of multiprogramming. Later, the 
process can be reintroduced into memory, and its execution 
can be continued where it is left off [10]. It temporarily 
removes a process from the main memory which is of low 
priority or has been inactive for a long time. This scheme is 
called swapping. The process is swapped out, and is later 
swapped in, by the medium-term scheduler [10]. 
 Fig. 1 below shows the abstraction on how jobs are 
admitted into memory by the job scheduler or long term 
scheduler. Then, the processor scheduler selects one among 
many processes and execute. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. Preliminaries 

A process is defined as an active program.  A program 
loaded into main memory for execution is considered to be 
a process. Programs are passive entity, such as a file 
containing a list of instructions stored on disk [10]. A 
program becomes a process when an executable file is 
loaded into memory for execution [10]. A process is said to 
be active because besides the code section, it also include 
the current activities, as represented by the value of the 
program counter and the contents of the processor’s 
registers [5]. A giving process may be in the following 
states: 

 New: a process is just newly created. 
 Running: the process is currently using the CPU. 
 Waiting: the process is waiting for some event to 

occur such as I/O event and so on.  
 Ready:  the process is ready to be assign a 

processor. 
 Terminated: the process has finished execution. 

 

Fig 1: Abstraction of scheduling structure 
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Fig. 2 shows that a new created process is admitted into 
the ready queue. Once admitted, its state changes from 
‘new’ to ‘ready’ state. As soon as a ready process is 
dispatched to use the CPU, its state will become ‘running’. 
Three things can happened to a running process: it may be 
interrupted as a result of the timer interrupt and its state 
become ‘ready’; or a running process can upon completion 
exit the system and its state becomes ‘terminated’; or a 
running process may request for an i/o event which will be 
forced to release the CPU and it state becomes ‘waiting’, 
and then back to ‘ready’ upon completion of i/o event. 

II. SCHEDULING CRITERIA 

Some of the various parameters use to measure or 
evaluate the performance of CPU scheduling algorithms are 
listed below. 
 CPU utilization: The CPU must not be idle, it should be 

as much as possible 100% busy. 
 Throughput: The amount of tasks/jobs to be completed 

within a given time is known as throughput. Throughput 
should be maximized. 

 Turnaround Time: it is the time taken to complete a given 
job. In order word, it is the time a job is waiting in the 
ready queue plus its CPU burst. Turnaround time is to be 
minimized.  

 Waiting Time: This is the time a job waited in the ready 
queue. It should be minimized. 

 Response Time: In an interactive system, turnaround time 
may not be the best criterion. Often, a process may 
produce some output fairly early and continue computing 
new results while previous results are being output to the 
user. Response time is the time from the submission of a 
request to when the first response is produced. This also 
should be minimized. 

 Number of context switching: This is the act of switching 
a process in and out of the CPU as a result of interrupt. It 
should be minimized. 

III. MOTIVATION 

Quantum Time (QT) is the major challenge of RR CPU 
algorithm because if one is not careful enough the 
algorithm may change and its purpose is defeated. 

Choosing a larger QT will practically degrade the system to 
First Come First Serve (FCFS) scheduling, a smaller one 
will create an overhead of context switching. Majority of 
the research work on dynamic RR jerks up QT above the 
average so as to achieve reduction in the average waiting 
time, average turnaround time and number of context 
switching. This is good but it is bound to face even greater 
challenges such as: poor multiprogramming, poor response 
time and unnecessary context switching. Some of the 
proposed algorithms went further and attached priority to 
shorter jobs. These two key issues make most of the 
proposed algorithms tending toward FCFS and Shortest Job 
First (SJF), and at the same time causing unnecessary 
context switching and poor response time. In the proposed 
algorithm, variable QT such that each is far less than the 
average of processes in the ready queue shall be computed. 
This shall greatly improve on the response time, 
multiprogramming, and eliminate unnecessary context 
switching. 

 

IV. RELATED WORKS 

Each of the proposed dynamic RR CPU scheduling 
algorithms provides some level of solutions base on their 
arguments. Among which are: Even Odd Round Robin 
(EORR). EORR took note of positions of processes in ready 
queue. The average of processes in odd positions is 
compared with the average of processes in the even 
positions and the greater is considered to be the quantum 
time [6]. Average Mid Max Round Robin (AMMRR). 
AMMRR calculates its quantum time as the mean between 
the average of processes in the ready queue and maximum 
CPU burst time [8]. In Ascending Quantum Minimum 
Maximum Round Robin (AQMMRR), quantum time is 
gotten by multiplying the summation between the minimum 
and the maximum CPU burst by 80 percent [2]. As for 
Multi Dynamic Quantum Time Round Robin (MDQTRR), 
there are two quantum time in each round. The first process 
up to the middle process uses the median quartile formula 
to calculate quantum time while preceding processes uses 
third quartile formula for it quantum time [4]. In Variable 
Quantum Time (VQT), averaging technique is employed to 
ensure that each process in the ready queue has a different 
quantum time [13]. Dynamic Quantum Time using the 
Mean Average compute time quantum in each round and 
use it to perform scheduling to processes in ready queue [1]. 

V. PROPOSED APPROACH 

Half Life Variable Quantum Time RR (HLVQTRR): 
Sometimes, some processes may go for more than two 
round and as such increases the number of context 
switching, average waiting time and average turnaround 
time. But HLVQTRR ensures that half of every processes’ 
bursts be executed in the first round, and in the second 
round the remaining half should run to completion. This 
will greatly improve multiprogramming irrespective of the 
variation in the processes’ length in the ready queue. In SJF, 
the major problem is starvation. This is solved because only 
half of a process’s job is executed what is left is preempted 
and the next process is attended to and so on. The major 

Fig. 2: Process state diagram 
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emphasis of this scheduling is: high multiprogramming, 
high response time, simplicity, elimination of unnecessary 
context switching and fairness which are the main criteria 
of RR CPU scheduling algorithm. At least, whatever the 
case may be, response time for each process will be high. 
This attribute is of high interest to real time systems. 
Another advantage of HLVQRR is that it maximizes the 

cost of calculating quantum time in the second round.  This 
means that in the second round which is also the final round, 
all the processes in the first round reappear. Other 
algorithms may go for second and third round with just two 
or three processes out of many. This may cause a serious 
disadvantage. Fig. 3 and Fig.  4 below are the flow chart 
and algorithm for the proposed approach

. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 4:  HLVQTRR algorithm 
 
 
1. //N= Number of processes 

     
//Pi= ith Process   
     
//PiQT= Quantum time for ith process 
     
//i= Loop variable   
     
//QT = quantum time  
     
//BT= Burst time of the processes 
     
2. While(RQ !=NULL)  
     
// RQ= Ready Queue  
     
//Calculation of Quantum time (QT) 
for i=1 to N Loop 
{ 
PiQT= Pi/2   // take the floor value 
} 
 
3. // Assign QT to (1 to n) processes. 
for i=1 to N loop 
{ 
Pi=QT 
Calculate the remaining Burst time of ith process. 
} 
End of for 
 
4. If (new process arrived) 
Then go to step1 
else if (new process is not arrived and BT!=0) 
then go to step 3 
else 
goto step 5 
end of if 
end of while 
 
5. Calculate AWT, ATAT and CS 
//AWT=Average waiting time 
//AWT=Average turnaround time 
//CS= Number of context switch 
 
6. End 

Fig. 3 :  HLVQTRR flow chart 

START 

     RQ != NULL ?    

Y

N

Is  BT !=0? 
 

Pi= PiTQ 

N

Y

Is i<=N? 

PiTQ=Pi/2

Calculate the remaining burst for the process 

Is new process 
arrived?  

Calculate AWT, ATAT, CS 

STOP 

N

Y

Y

N

i++ 

Simon Ashiru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7210-7217

www.ijcsit.com 7212



VI. ILLUSTRATION/ANALYSIS 

Case 1: 
Using mean =80 and deviation=20, the following 

processes (Pi) and their associated CPU burst are generated. 
{P1=88, P2=89, P3=85, P4=93, P5=90, P6=84, P7=90} 

 

A. Classical Round Robin 

In a classical RR, the quantum time is the average of 
processes CPU burst in the ready queue. 
Quantum time (QT) = (88+89+85+93+90+84+90)/7 =619/7 
= 88. (Always use the ceiling.) 
After applying Round Robin, the left over time will be:  
Remaining processes CPU burst: P2=1, P4=5, P5=2, P7=2.  
These lefts over will be use in round two (2) with same QT. 
 

1)  Observation: In classical RR, 
Multiprogramming: Only four (4) processes display 
multiprogramming because they reappeared in the next 
round. They are: P2, P4, P5 and P7, while the rest ran to 
completion. 
Response time: For P2, after the first round it began to 
respond at time 609, P4 at time 610, P5 at time 615 and P7 
at time 617. This is not good at all. 
Context switching:  Context switching is 11. The overhead 
cost incurred performing context switching in the second 
round was unnecessary. P2 was preempted just for 1 time 
unit, P4 was preempted just for 5 time unit, P5 was 
preempted just for 2 time unit and P7 was preempted just 
for 2 time unit. All of these were unnecessary.  If it can 
execute up to 88 time unit, it should not have been 
preempted just for 1 remaining time unit. Same goes to the 
rest. It also implies that the multiprogramming it displayed 
was also unnecessary. 
 

Fig 5: Gantt chart of classical RR and HLVQTRR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Half Life Variable Quantum Time Round Robin 
(HLVQTRR) 

 
Method: (take the ceiling to be QT) 
P1: QT= 88/2 = 44,  P2: QT= 89/2≈ 45,  P3: QT= 85/2 ≈ 43,  
P4: QT = 93/2≈ 47,  P5: QT= 90/2 = 45,  P6: QT= 84/2 = 
42,  P7: QT = 90/2 = 45. After applying round robin, the 
left over time will be: 
Remaining processes CPU burst:   P1=44, P2=44, P3=42, 
P4=46, P5=45, P6=42, P7=45. In this second round, each 
process will run to completion. That is QT will be equal to 
each processes’ remaining CPU burst. 

1)  Observation: In HLVQTRR, 

Multiprogramming: All the processes will always display 
multiprogramming. Multiprogramming is guaranteed. 

Response time: P2 began responding at 355, P4 at 441, P5 
at 487 and P7 at 574 time unit. Compare to the classical RR, 
the difference in the response time for P2 between classical 
RR and HLVQT RR is 609-355=254 time unit. Their 
differences are highly significant in favour of HLVQTRR. 
This goes same with the rest processes. 

Context switching: Context switching is 14. Although it is 
much, it has achieved high response time. Each of the 
switching is done intelligently because processes must have 
executed half way before switching. 

Fig. 5 below shows the Gantt charts between Classical RR 
and HLVQTRR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 2:     

Classical RR Gantt chart:

     P1                  P2      P3                 P4     P5                 P6              P7         P2     P4    P5   P7 

0       88               176              261          349               437              521            609  610    615  617  619

Round 1 Round2

HLVQTRR Gantt chart 

Round1 Round2 

         0           44        89        132        179         224       266       311       355        399        441        487        532      574     619   

   P1      P2        P3         P4           P5          P6       P7        P1          P2           P3         P4        P5          P6        P7 
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Using mean =80 and deviation=60, the following processes 
and their associated CPU burst are generated. P1=110, 
P2=89, P3=113, P4=137, P5=86, P6=131, P7=95} 
Multiprogramming: In Classical RR, P1, P3, P4 and P6 
displayed multiprogramming. While In HLVQTRR, all the 
processes displayed multiprogramming. 
Response time: In classical RR, P1 start responding at 706, 
P3 at 707, P4 at 711, P6 at 739. While in HLVQTRR, 
response times are at: P1 at 383, P3 at 482, P4 at 538 and 
P6 at 649 
Context switching: In classical RR, their lefts over time 
were so small. Switching for next round was unnecessary. 
While in  
HLVQTRR, Context switching is 14. Each of the switching 
was done intelligently.  
 
 Case 3:       
Using mean =80 and deviation=70, the following processes 
and their associated CPU burst are generated. {P1=82, 
P2=128, P3=113 P4=129, P5=115, P6=115, P7=81} 
Multiprogramming: In Classical RR, P2, P3, P4, P5 and 
P6 displayed multiprogramming. While In HLVQTRR, all 
the processes displayed multiprogramming. 

Response time: In classical RR, P2 starts responding at 708, 
P3 at 727, P4 at 731, P5 at 751 and P6 at 757. While in 
HLVQTRR, response times are at: P2 at 425, P3 at 489, P4 
at 545, P5 at 609 and P6 at 649 
Context switching: In classical RR, their lefts over time 
were so small. Switching for next round was unnecessary. 
While in HLVQTRR, Context switching is 14. Each of the 
switching was done intelligently. 

VII. SIMULATION 
 All processes are considered to be in the ready 
queue and their arrival time set to be zero. Also, processes 
are considered to be of same priority. The simulator uses 
normal distribution function which requires three input 
parameters to generate processes and their associated CPU 
burst. The input parameters are: mean (µ), standard 

deviation   , and number of process. When the program 

is executing, it will request the user to supplier number of 
process, the mean and the standard deviation.  The 
simulator computes the average waiting time, average 
turnaround time, and number of context switching for each 
algorithm (Classical RR and HLVQTRR). The results of 
the experiments are given in the table and figure below. Fig 
6 below shows the interface of the simulator 

. 
 

   Fig 6: Interface of the simulator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 below shows the simulation result in a tabular form. 
P is number of process, d is the deviation value used in 
each run, CS is the context switching, MP stands for 
multiprogramming rate. The average response time used is 
the average of the time of response of all the processes in 
the first round. Multiprogramming tracks those processes 
that went beyond   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the first round. From the table, the rate at which HLVQTRR 
is winning in multiprogramming and response time is more 
than it is losing in average waiting time and average 
turnaround time when compared with the classical RR. The 
idea is to have an algorithm which has a better response 
time and multiprogramming such that it does not suffer 
much in average waiting time and average turnaround time.  
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             Table 1: Simulation results 

 

The graphs below further demonstrate how efficient 
HLVQTRR as far as response time and multiprogramming 
is concern. 
 

 

 

 

 

 

 

 

 

 

 

Fig 7: Graph of average waiting time 

 

 

 

 

 

 

 

 

 

 
 
 
           Fig 8: Graph of average turnaround time 

 
 
 

 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Fig 9: Graph of average response time 

 

 

 

 

 

 

 

 

 

   

Fig 10: Graph of multiprogramming rate 

From fig. 7 and 8 above, Classical RR is slightly better than 
HLVQTRR. But looking at fig. 9 and 10, it can be observed 
that HLVQTRR provides a better response time and 
multiprogramming than its classical RR counterpart. The 
results obtained in fig. 9 and 10 are so significant unlike the 
difference obtained in fig. 7 and 8 which is less significant. 

 

Simulation result between Classical RR and HLVQTRR 
 
P 

 
d 

 
Mean 

Classical RR HLVQTRR 
AWT ATAT Average 

response 
time 

MP AWT ATAT Average 
Response time 

MP 

10 45 56 565.4000 648.8000 358.8000 6 564.60000 648.00000 189.3000 10 
20 78 98 1724.700 1863.700 1203.300 10 1961.5500 2100.5500 640.3500 20 
30 321 213 6690.070 7034.470 4390.970 14 7458.5300 7802.9300 2464.930 30 
40 342 453 16518.50 17149.72 11570.18 17 18401.600 19032.800 6092.520 40 
50 443 564 29119.96 29941.60 18968.70 25 30284.160 31105.800 10154.42 50 
60 543 653 39993.70 40949.23 26142.55 30 42292.900 43248.430 14104.08 60 
70 564 674 48017.04 48974.86 30894.93 35 49755.390 50713.200 16710.27 70 
80 634 754 59437.34 60493.22 38822.68 38 62810.260 63866.150 21103.35 80 
90 746 876 82855.50 84121.70 51997.59 50 84399.130 85665.330 28054.71 90 
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VIII. WHY HLVQTRR IS BETTER THAN CLASSICAL RR 
In fact, after studying high performance computing, it is 
clear that HLVQTRR will be a good algorithm to perform 
scheduling seeing that processes are roughly equally 
partition. Whatever the case may be, it will demonstrate 
multiprogramming by ensuring only half of each process is 
executed in the first round the remaining will be executed in 
the second round. The slight achievement made by classical 
RR in average waiting time and average turnaround time 
against HLVQTRR cannot be compared with the high 
achievement made by HLVQTRR in response time and 
multiprogramming. The overall result is in favour of 
HLVQTRR. 
 One of the challenging issues regarding classical RR is 
how it handles multiprogramming in a situation whereby 
processes with the same priority arrive at different time. For 
example, if the first process begins using CPU before any 
other process arrives, irrespective of the process size, the 
process that has the CPU must run to completion without 
being preempted. This is because in an ideal classical RR 
the quantum time will be equal to the CPU burst of the 
process that arrived first and begins to use the CPU. At this 
time, the running process cannot be preempted unless 
another process with higher priority arrives. For example, 
assuming P1 having CPU burst of 80ms arrives at time t=0, 
and begin to use the CPU. After 3ms, another process say 
P2 arrives with CPU burst of 5ms, having same priority 
with P1. In classical RR, P1 QT will be the same as its burst 
time, that is QT=80ms. Though it is RR algorithm, in this 
kind of scenario, the first process which is P1 must run to 
completion irrespective of its size. P2 will have to wait for 
as long as it takes. This is a complete drawback in 
multiprogramming and response time. P2 will begin 
responding at 80ms-3ms=78ms, a time that will take P1 to 
complete its execution. This problem is solved in 
HLVQTRR. The solution is this: if the second process (P2) 
arrives in the first round of the first process (P1), then P1 
will be preempted as soon as it finished its first round. But 
if P2 arrives in the second round of P1, then the P2 must be 
patient to wait because the first process (P1) has gone 
beyond half of its job. Using the same example above, P1 
will only run for 40ms, that is, half of its job will be 
executed in the first round. But, since P2 arrived when P1 
must have executed its job for 3ms, P2 will actually begin 
responding at 40ms-3ms=37ms as compared to 78ms in 
classical RR. The difference in their response time is 78ms 
- 37ms=41ms in favour of HLVQTRR. 
 Another problem with classical RR is that all the 
processes less than or equal to their average value will 
definitely run to completion without being preempted. This 
does not display multiprogramming and response time is 
very poor. In order to demonstrate high level of 
multiprogramming and response time, HLVQTRR is 
introduced. In HLVQTRR, half of each process must return 
for second round. For example, looking at their Gantt charts 
(fig. 5) for the classical RR, after first round, P2 began 
responding at 609, P4 at 610, P5 at 615 and P7 at 617. But 
when compared with that of HLVQTRR Gantt chart P2 
began responding at 355, P3 at 399, P4 at 441, P5 at 487, 
P6 at 532 and P7 at 614. It is very clear that the difference 

in their corresponding response time is very high in favour 
of HLVQTRR. 
 The other problem is tie up to the attempt made on the 
various proposed dynamic RRs. It is clear that each of the 
approach tries to jerk up the quantum time just above the 
average. Because the classical RR uses the average as its 
quantum time, all the dynamic RR jerks up the quantum 
time slightly above the average. This is an attempt to 
capture more processes in the first round that were not 
captured in the first round when using classical RR. Their 
concept is the same: for one dynamic RR to perform better 
than the other, its quantum time must just be slightly greater. 
If the quantum time is continuously been jerked up a time 
will reach when the algorithm will become FCFS. But 
HLVQTRR provides quantum time for each process that is 
far lower than the average, and despite that, it demonstrates 
high rate of multiprogramming involving all the processes 
and has a fair result in its AWT and ATAT. 

IX. CONCLUSION 
 It is clear that HLVQTRR is better than the classical RR. 
It has displayed high rate of multiprogramming and 
response time. There is no unnecessary context switching 
like that of classical RR. Although, emphasis was not on 
average waiting time and average turnaround time, yet it 
produced a fair result. Given any ideal dataset, HLVQTRR 
will always perform better in terms of: multiprogramming, 
response time and appropriate context switching. 
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